

Manuel d'Installation / d'Utilisation

Rev 1.6

Table des Matières

Consignes de Sécurité Importantes	2
1.Introduction	3
2.Interface : Explications	. 4
2.1 Disposition de l'interface	4
2.2 Port d'entrée AC	4
2.3 Port d'entrée DC	. 4
2.4 Port réseau Ethernet RJ45	5
2.5 Signal RJ45 (Seulement pour l'Australie)	5
2.6 Interface USB	5
2.7 Réinitialiser	. 5
2.8 LED	. 5
3. Installation du Matériel	6
3.1 Préparation	6
3.2 Sélection d'un emplacement d'Installation pour l' ECU-C	6
3.3 Connexions par câbles	8
3.4 Connexion du signal RJ45	. 8
3.5 Connexion Internet	8
3.6 Interface de transformateur de courant	10
4. Opération de base	11
4.1 Restaurer les réglages d'usine	11
5. Interface réseau local	12
5.1 Connexion à l'ECU-C via le réseau local sans fil	12
5.2 Ecran d'Accueil	12
5.3 Ecran de données en temps réels	14
5.4 Ecran de mesure	16
5.5 Ecran d'administration	18
6.Gestion de l' ECU-C à distance (EMA)	28
6.1 Configuration de l'ECU-C/ Page d'état de l'ECU-C	28
6.2 Réglage du fuseau horaire de l'ECU-C	29
6.3 Gestion et mise à jour des numéros (ID) des micro-onduleurs	29
7. Données Techniques	31

Consignes de sécurité importantes

Symboles remplaçant certains mots présents sur un équipement, un

écran, ou un manuel

APsystems	Marque dénosée
	Attention, risque de choc électrique
<u>_</u>	L'équinement est protégé par une double isolation ou
	isolation renforcée
CE	La marque CE est attachée à l'onduleur solaire pour vérifier que l'appareil, fonctionne conformément aux dispositions de la directive européenne basse tension et EMC.
Personnel Qualifié	Une personne conseillée ou surveillée par un électricien lui permettant de percevoir les risques et dangers que l'électricité peut créer afin de les éviter. Dans le cadre de ce manuel, une " personne qualifiée" est quelqu'un qui connaît les exigences en matière de sécurité, système de réfrigération et d'EMC et est autorisée à brancher, l'équipement, les systèmes, conformément aux procédures de sécurité établies. Les onduleurs et accessoires connexes ne peuvent être mise en service que par un personnel qualifié.

2

1.Introduction

L'unité de communication d'énergie APsystems (ECU-C) est la passerelle de communication pour nos micro-onduleurs. L'unité recueille les données de performance du module PV à travers chaque micro-onduleur individuel et transfère cette information à une base de données Internet en temps réel. Grâce au logiciel de surveillance et d'analyse de l'énergie APsystems, l'ECU-C vous donne l'analyse précise de chaque micro-onduleur et module PV de votre installation solaire à partir de n'importe quel périphérique connecté au Web. Doté d'un WebServer http intégré, L'ECU-C offre l'intégration réseau la plus simple et la plus flexible des « DataLogger » sur le marché. L'interface conviviale basée sur le navigateur vous permet d'accéder à votre installation solaire en quelques secondes.

Caractéristiques

- Collecte des statistiques individuelles des modules et des micro-onduleurs
- Communication à distance
- Ne nécessite aucun câblage supplémentaire
- Adaptée aux installations tertiaires ou industrielles

Le système micro-onduleur d'APsystems est utilisé dans une configuration "raccordé au réseau" et se compose de 3 éléments :

- Le micro-onduleur APsystems
- La passerelle de communication ECU-C
- Le portail de monitoring et d'analyse de l'énergie EMA basé sur le web

2.Interface: Explications

2.1 Disposition de l'interface

L'interface ECU-C inclut, (Schéma 2) de gauche à droite : Les entrées AC, 🤜

CT Production、CT Consommation、Relay Output (Réserve/ Non Actif)、RelayFeedback Input (Réserve/ Non Actif) et Reset.

(Schéma 3) de gauche à droite : Port、 DC、 RS232、 RS485、 USB1、 USB2、 RJ45、 Internet、 RJ45 Signal.

Schéma 3

2.2 Port d'entrée AC

Le port d'entrée AC connecte l'alimentation via la ligne électrique. Dans le cas d'une configuration monophasée, la phase L1 doit être raccordée.

	L1	L2	L3	N	PE	
Triphasé	V	V	V	v	V	
Monophasé	v	×	×	v	√	

A NOTICE

La puissance d'entrée AC doit être installée avec un sectionneur

2.3 Port d'entrée DC

Le port d'entrée DC (ou CC) connecte l'alimentation via la ligne d'alimentation 16V DC.

2.Interface : Explications

2.4 Port Réseau Ethernet

L'ECU-C permet à l'utilisateur de communiquer avec l'EMA, ou de se connecter à une page locale d'ECU-C en l'absence du LAN câblé et du WLAN, pour installer le système et afficher les données système via le port réseau Ethernet. La connexion au câble est recommandée pour une connexion stable.

2.5 Signal RJ45 (Seulement pour l Australie)

Le signal RJ45 est conçu pour DRM 5/6/7/8, il doit être connecté via l'entrée RJ45 sinon les onduleurs de fonctionneront pas

Schéma 4

2.6 Interface USB

L'interface USB est une réserve.

2.7 Reset

Appuyez sur le bouton Reset pendant trois secondes ou plus, et l'ECU-C retrouvera automatiquement ses paramètres par défaut.

A NOTICE

L'historique de production ne sera pas effacé.

2.8 LED

Le voyant OK clignote quand l'ECU-C démarre, et il continuera après enregistrement.

La LED comm s'allumera lorsque l'ECU-C se connectera à l'EMA.

Le voyant d'erreur s'allumera si l'ECU-C rencontre un problème .

3.1 Préparation

Assurez-vous que les composants suivants sont prêts avant de commencer à installer l'ECU-C:

- Une connexion Internet haut débit disponible.
- Un routeur broadband avec un câble Ethernet ou un routeur sans fil.
- Un ordinateur portable avec un navigateur Web (pour voir le monitoring EMA en ligne).
- Un ECU-C pré-programmé.

3.2 Sélection d'un emplacement d'installation pour l'ECU-C

- Choisissez un endroit qui soit le plus près possible du réseau électrique
- L'ECU-C n'est pas prévu pour un usage extérieur. Ainsi si l'installation se fait à l'extérieur près d'une boite de jonction ou d'un tableau électrique, assurez-vous de le placer dans un boitier électrique à l'indice de protection IP étanche approprié.
- Evitez d'installer l'ECU-C où les enfants peuvent y avoir accès.

1) Installation du coffret de distribution

Si vous utilisez l'ECU-C dans une armoire électrique de distribution:

Tirez les 4 boutons pressions à l'aide d' un tournevis

 Fixez les attaches ci-dessous à l'extrémité du guide en les faisant ressortir par pression comme illustré dans le schéma 6 ci-dessous.

Schéma 6

NOTICE

Ne pas positionner les antennes à l'intérieur d'une boite métallique car cela bloquera le signal

2) Utiliser un support mural

Lors du montage de l'ECU-C à un support mural, assurez-vous que l'emplacement soit froid, sec et à l'intérieur.

- En suivant les dimensions ci-dessous, L'ECU-C se fixe sur le mur à l'aide deux vis.
- Quatre vis M4 + entretoises sont fixées au mur et les tailes de poinçons sont comme suit:

3.3 Connexion des câbles

Schéma 8

- Branchez le câble d'alimentation sur le port de connexion d'alimentation en haut de l' ECU-C. (il peut également être alimenté en CC).
- Branchez le câble LAN fourni sur le port réseau en bas de l' ECU-C.

3.4 Connexion du signal RJ45

Brancher le connecteur RJ45 au port de signal RJ45.

3.5 Connexion Internet

Il existe 3 différentes options pour relier l'ECU-C à l'Internet :

Option 1: Connexion directe par câble LAN.

- 1) Assurez-vous que le câble LAN soit connecté au port réseau en bas de l'ECU-C.
- 2) Connectez le câble LAN à un port disponible sur le routeur broadband.

Schéma 9

Option 2: Connexion sans fil.

Utilisez le WLAN interne à l'ECU-C (voir gestion de la connexion WLAN, p.23).

Option 3: Utilisation d'un Pont CPL:

- 1) Assurez-vous que le câble LAN soit connecté au port réseau en bas de l'ECU-C.
- 2) Branchez le câble LAN à l'unité "Send" du pont CPL.
- 3) Branchez un câble LAN de l'unité «Receptrice» du pont CPL à un port disponible sur le routeur broadband (reportez-vous au manuel d'instructions du pont CPL).

Schéma 10

A NOTICE

Le câble réseau peut être utilisé pour relier l'ECU-C avec le PC directement Dans ce cas, changez l'adresse IP et le masque réseau à 192.168.131.1 et 255.255.255.0, respectivement.

 Un pont CPL utilise la ligne d'alimentation pour communiquer et nécessite à la fois une unité d'«Envoi» et de «Réception».

 La qualité et la longueur du câble LAN auront une incidence sur la qualité de communication avec l'ECU-C. Vous pouvez utiliser un commutateur pour améliorer la qualité de communication si nécessaire.

3.6 Interface CT

En installant les CTs, le compteur intégré à l'ECU-C peut mesurer la production et la consommation d'énergie. Veuillez vous référer au schéma ci-dessous. Il est obligatoire d'installer les 2 CTs ; 1 côté production et 1 côté consommation pour obtenir la fonction zéro injection réseau. La fonction zéro injection réseau gère les micro-onduleurs un par un: elle permet de mettre sous tension ou à l'arrêt chaque micro-onduleur via la communication ZigBee pour obtenir une production inférieure ou égale à la consommation.

Schéma 11

Assurez-vous que l'ECU-C soit à l'arrêt (état hors-tension) lors de l'installation

4. Opérations de base

4.1 Restorer les réglages d'usine

La photo ci-dessous montre les connexions au bas de l'ECU-C.

Schéma 12

Pour restaurer les réglages d'usine de l'ECU-C, appuyez simplement sur le bouton "Reset" pendant 3 secondes ou plus. L'appareil reviendra automatiquement à ses réglages d'origine.

5.1 Connexion à l'ECU-C via le réseau sans fil local

- 1. Allumez la fonction Wi-Fi sur le PC ou téléphone.
- Numérisez le code barre de l'ECU nommé "ECU-WIFI_XXXX" (les "xxxx" se réfèrent aux 4 derniers numéros du code de l'ECU-C), Connectez-vous à ce numéro de l'ECU-C. La première connexion n'a pas de mot de passe.
- 3. En utilisant un navigateur Web standard sur votre ordinateur, entrez l'IP de l'ECU 172.30.1.1 dans le navigateur.

L'écran de l'ECU-C s'affiche.

iome		2018-04 We	l-11 15:24:37 dnesday
ECU ID	21500000425	ENADONIA	NTAL DENEETTS
Lifetime generation	250.04 kWh	00.00	A Frank shared by:
Last System Power	566 W	CO ₂ Offs	a Equivalent to
Generation of Current Day	7.99 kWh	6.0	GALLONS
Last Connection to website	2018-04-11 15:21:19		9
Number of Inverters	4	T.	TREES
Last Number of Inverters Online	4	all.	183
Current Software Version	C1.0		NO
Current Time Zone	Asia/Shanghai		
ECU Etho Mac Address	80.97 1B-00 B4-66		

Schéma 13

5.2 Ecran d'Accueil

Sélectionnez "Accueil" en haut de la page. La page d'accueil s'affiche

lome		2018-04-11 15:2 Wednesday	4:37
ECU ID	21500000425	ENABONMENTAL B	ENFEITS
ifetime generation	250.04 kWh		in the second
Last System Power	566 W	CO2 Dirset Equiva	DOTE TO
Generation of Current Day	7.99 kWh	6.0 0	ALLONS
Last Connection to website	2018-04-11 15:21:19		9
Number of Inverters	4		TREES
Last Number of Inverters Online	4	lla l	183
Current Software Version	C1.0		NO.
Current Time Zone	Asla/Shanghai		
ECU Eth0 Mac Address	80:97:18:00:84:AA		
ECU Wian0 Mac Address	60°C5 A8 F6:46 7D		

ECU-C ID:	Il s'agit d'un numéro unique qui identifie cette ECU-C
Lifetime Generation:	Quantité de.production que ce système a généré depuis sa mise en service
Last System Power:	Dernière puissance produite par le système
Generation of Current Day:	Quantité de production que le système a généré au cours de la journée
Last connection to	La dernière fois que l'ECU-C a accédé à la base des données EMA.
Website:	Nombre de micro-onduleurs qui ont été programmés dans l'ECU-C.
Number of Inverters	
Last Number of Inverters Online:	Nombre de micro-onduleurs qui apparaissent sur l'ECU-C
Current Software Version: Current Timezone:	Version actuelle du firmware.Fuseau horaire qui a été programmé dans l'ECU-C
ECU-C Eth0 Mac	L'adresse du LAN de l'ECU-C.
Address ECU-C Wlan0 Mac Address	L'adresse WLAN interne de l'ECU-C.
Inverter Comm. Signal Level	La Force du signal de communication entre le micro-onduleur et l'ECU-C allant de 1 à 5 (5 étant le plus fort signal).

•

5.3 Ecran des données en temps réels

a) Données en temps réel (Real time data)

Pour afficher les statistiques de données de fonctionnement du système en temps réel de votre installation, cliquez sur « Real time Data » (données en temps réel) de l'écran d'accueil de l'ECU C.

L'écran des données temps réel s'affiche.

eal Time Data						Real Time Data
nverter ID	Current Power	Grid Frequency	Grid Voltage	Temperature	Reporting Time	Power
06000006159-1	58 W		222 V	10.10		Energy
406000006159-2	60 W	50.0 HZ	222 V	43 °C	2018-04-11 10:20:21	
406000006125-1	56 W		221 V			
406000006125-2	57 W	50.0 HZ	221 V	44 °C	2018-04-11 10:20:21	
406000006434-1	59 W	10.0.14	221 V	40.10	1010 02 41 45 05 04	
40600006434-2	60 W	50.0 Hz	221 V	42.0	2010-04-11 10:20:21	
406000006468-1	54 W	50.0.1m	222 V			
406000006468-2	56 W	50.0 Hz	222 ∨	42 "C	2018-04-11 15:25:21	

Schéma 15

b) Courbe de production (« Trend of System Power »)

Pour afficher la production de n'importe quelle période, cliquez sur "Power", au sein de la page des données en temps réel .

Courbe de production (« Trend of System Power ») s'affiche.

Home	Real Time Data Meter Administration	
Power		Real Time Data
	2018-04-11 📖 Query	Power
	Trend of System Power	Energy
1500		
1250		
1000 250 250	Im	
500	W W	
250		
0	06.00 67.00 08.00 09.00 10.00 11.00 12.00 13.00 14.00 15.00 Solar Generated Today, E.03 Milh	

Schéma 16

c) Statistiques de production

Appuyez sur "Energy" à la page de données en temps réel pour afficher la génération d'énergie de votre installation.

L'écran des statistiques de production s'affiche.

Données de performance pour la semaine en cours:

Schéma 17

Données de performance pour le mois en cours.

Schéma 18

Données de performance pour l'année en cours.

								Real Time Data	
		Current Year	2018-04-11	10	Query -			Power	
		Po	wer Generation	Statistics			=	Energy	
12	5								
10	0								
9									
y (kW	5					_	-		
Energ	0						-		
2	5								
	0 2017/05 2017/06	2017/07 2017/0	8 2017/09 2017/10	2017/11 201	7/12 2018/01	2018/02 2018/03	2018/04		

5.4 Ecran de compteur

a) Courbe de production

Pour visualiser la production générée, la consommation et l'« Usage » (puissance consommée ou réinjectée sur le réseau), cliquez sur "Power"sur la page "Meter".

La page de courbe de production (« Trend of System Power ») s'affiche.

								Power	
			2018-04-11 Tre	nd of Power	Query		=	Energy	
Power (W)	44			1	h	ht.	Production A Production B Production B Consumption A Consumption B Consumption C Usage A Usage A Usage C		
Produ	-1k 11 Apr	03:00 r produced by sola	06:00 ar system	09:00	12:00	15:00	— Usage C		

b) Statistiques énergétiques

Appuyez sur "Energy" à la page "Meter" pour visualiser la production générée, la consommation et l'« Usage .

L'écran des statistiques énergétiques s'affiche.

Données de performance de la semaine en cours:

Schéma 21

Données de performance du mois en cours

Données de performance de l'année en cours:

Energy			Power	
	Current Year 2018-04-11 🛅 Query +		Energy	
	Energy Statistics	=		
500				
400				
(l)				
V() A				
200				
100				
0 20	17/05 2017/06 2017/07 2017/08 2017/09 2017/10 2017/11 2017/12 2018/01 2018	02 2018/03 2018/04		
	Production Consumption Usage			

Schéma 23

5.5 Ecran d'administration

a) Gestion des micro-onduleurs (IDs)

Les numéros des micro-onduleurs (IDs) doivent être programmés dans l'ECU-C afin que celui-ci les reconnaisse. L'ECU-C ne détectera pas automatiquement les micro-onduleurs.

Programmation initiale de l'ECU-C avec les micro-onduleurs.

A NOTICE
Le champ du numéro de série du micro-onduleur « Enter Inverter ID » sera vide si vous n'avez pas encore renseigné un numéro de micro-onduleur.
··

1) Sélectionnez "Administration" en haut de la page.

La page de gestion des numéros de série s'affiche

		ID Management
	406000006125	Meter / Zero Export
	406000006159 406000006434 406000006465	Date, Time, Time Zone
		Language
		Network Connectivity
		WLAN
		Firmware Update

Si vous rentrez le numéro du micro-onduleur manuellement -

1) Entrez les 12 chiffres du micro-onduleur.

2) Une fois que tous les numéros (IDs) ont été entrés, appuyez sur "Update". « ID updated Successfully »! "s'affiche après guelques secondes.

Si vous utilisez un appareil de scan portatif pour rentrer les numéros du micro-onduleur -

- 1) Copiez les numéros (IDs) scannés dans la boite de gestion prévue à cet effet.
- 2) Appuyez sur "Update". « ID updated Successfully »! "s'affiche après quelques secondes.

Aiouter des micro-onduleurs

Si le nombre de numéros de série (ID) d'onduleurs affichés sur la page est inférieur au nombre réel d'onduleurs installés :

1) Sélectionnez "Administration" au dessus de la page.

La page de gestion des numéros d'onduleurs existants s'affiche

	(D Management
406000006125	Meter / Zero Export
40600006159 40600006434	Date, Time, Time Zone
406000006468 406000006470	Language
	Network Connectivity
	WLAN
	Firmware Update

2) Faites défiler jusqu'à la fin de la liste existante.

3) Saisissez le nouvel ID.

4) Appuyez sur "Update". Le message "ID updated Successfully "! s"affichera après quelques secondes.

Effacer un numéro de micro-onduleur existant

Si le nombre de numéros de série (ID) d'onduleurs affichés sur la page est supérieur au nombre d'onduleurs installés:

1) Sélectionnez "Administration" au dessus de la page.

La page de gestion des numéros d'onduleurs existants s'affiche

ID Management		ID Management
	406000006125	Meter / Zero Export
	406000006159 406000006434 405000006483 419010006470	Date,Time,Time Zone
		Language
		Network Connectivity
		WLAN
		Firmware Update

Sc	hér	ma	26

	ID Management
406000006125	Meter / Zero Export
406000006159 406000006434	Date, Time, Time Zone
40600006468 40600006470	Language
	Network Connectivity
	WLAN
	Firmware Update

Schéma 27

20

2) Mettez en surbrillance les ID à supprimer de la liste.

3) Appuyez sur "Update". « ID updated Successfully »! "s'affiche après quelques secondes.

Modifier un numéro de micro-onduleur existant

Si le numéro du micro-onduleur affiché ne correspond pas au numéro du micro-onduleur installé. Modifiez les numéros des micro-onduleurs incorrects à l'aide de la section « Input Inverter ID », Ensuite, appuyez sur "Update". Le message "ID updated Successfully "! s'affichera après quelques secondes.

La page de gestion des numéros de série avec les IDs des onduleurs existants s'affiche:

Home Real Time Data	Meter Administration	
ID Management		ID Management
	406000006125	Meter / Zero Export
	40600006159 40600006434	Date, Time, Time Zone
	40600006468 40600006470	Language
		Network Connectivity
		WLAN
		Firmware Update
	Update Clear ID	

Schéma 28

	ED Management
406000006125	Meter / Zero Export
406000006159 406000006434	Date, Time, Time Zone
406000006468 406000006470	Language
	Network Connectivity
	WLAN
	Firmware Update

Effacer des numéros de micro-onduleurs (IDs)

En appuyant sur "Clear ID", vous supprimez tous les numéros des onduleurs de la liste.

La page de gestion des numéros des micro-onduleurs existants s'affiche.

Schéma 30

ANOTICE

Combinez les deux étapes ci-dessus lors de l'échange d'un onduleur. Ajoutez le nouvel onduleur, et supprimez l'ancien. N'oubliez pas de suivre le même processus sur l'EMA d'APsystems ;l'ECU-C et l'EMA ont besoin d'être synchronisés ensemble.

b) Mesure Zéro Injection

Lorsque la fonction de mesure (« Meter ») est activée, les utilisateurs peuvent observer la

Production, la Consommation ou l'« Usage » ainsi que l'énergie générée sur la page « Meter ».

Meter / Zero Export		ID Management
Meter / Zero Export switch	Meter ON Zero Export OFF *	Meler / Zero Export
Power Limit	Meter ON Zero Export OFF Meter ON Zero Export ON	Date, Time, Time Zone
, one cam	Meter OFF Zero Export OFF	Language
	Save	Network Connectivity
		WLAN
		Firmware Update

La fonction Zéro injection peut limiter la puissance envoyée sur le réseau. Les utilisateurs peuvent déterminer le maximum de puissance exportée lorsque la fonction est activée.

		ID Management
Meter / Zero Export switch	Meter ON Zero Export ON *	Meter / Zero Export
Power Limit 0	0	Date, Time, Time Zone
	-	Language
	SLIVE	Network Connectivity
		WLAN
		Firmware Update

Schéma 32

c) Changer la date, le fuseau horaire

Pour la précision des rapports de production, il est primordial de programmer l'ECU-C avec une date et un fuseau horaire corrects par rapport au lieu de l'installation.

- 1) Sélectionnez "Administration" en haut de la page.
- 2) Sélectionnez "Date, Time, Timezone".
- La Date, l'heure et le fuseau horaire (Time, Time Zone) s'affichent sur la page

Date, Time, Time Zone		ID Management
Date Time	2018/04/11 15:49:09	Meter / Zero Export
	Update	Date,Time,Time Zone
		Language
Time Zone	Asia/Shanghai •	Network Connectivity
	Update	WLAN
		Firmware Update
NTP Server	0 asia pool ntp.org	

3) Réglez la date dans le champ "Date Time"

Schéma 33

4) Sélectionnez le fuseau horaire adéquat depuis le menu déroulant.

d) Gestion de la connexion réseau

Le paramètre de connexion du réseau par défaut pour l'ECU-C est "DHCP," permettant à l'ECU-C d'établir une connexion automatique via le routeur. Une adresse IP statique peut être assignée à l'ECU-C si le réseau l'exige.

- 1) Sélectionnez "Administration" en haut de la page.
- 2) Sélectionnez "Network Connectivity" (Connectivité réseau).

La page de connectivité réseau s'affiche:

Network Connectivity	ID Management
Eth0 IP address	Meter / Zero Export
192.169.1.177	Date, Time, Time Zone
IP Settings	Language
Obtain an IP address automatically	Network Connectivity
Use the following IP address	WLAN
Update	Firmware Update

- 3) Sélectionnez "obtenir une adresse IP automatiquement".
- 4) Appuyez sur "Update".

e) Gestion de la connexion WLAN

L'ECU-C peut fonctionner en deux modes: « WLAN » et « Local Wireless Access ». Dans le mode « WLAN », l'ECU-C peut se connecter à un routeur par Wi-Fi. En « local Wireless Access », le téléphone de l'utilisateur ou le PC peuvent se connecter à l'ECU-C pour accéder au Web local.

Mode WLAN

- 1) Sélectionnez "Administration" en haut de la page.
- 2) Sélectionnez « WLAN » et cliquez sur l'onglet « WLAN »

		ID Management
WLAN LWA		Meter / Zero Export
		Date,Time,Time Zone
Available Networks		Language
TP-LINK_CS	at	Network Connectivity
ECU-WIFI_2272	l	WLAN
© TP-LINK_BA8E		Eirmware Undate
© ECU_R_21600000369	In	, annuale optime
@ TP-LINK 0580 1	. al	

Schéma 35

3) L ECU-C affichera les réseaux disponibles.

Sélectionnez le bouton du réseau auquel vous souhaitez accéder, entrez le mot de passe et connectez-vous en cliquant sur « Connect ».

 Home
 Real Time Data
 Meter
 Administration

 WLAN
 WLAN
 ID Management

 WLAN
 LWA

 MULAN
 LWA

 Available Networks
 ID Management

 © TP-LINK_CS
 Imagement

 © ECU-WIFL2272
 Imagement

 © TP-LINK_BABE
 Imagement

 © ECU-WIFL2272
 Imagement

 Imagement
 Imagement

 Imagement
 Imagement

 Imagement
 Imagement

 Imagement
 Imagement

 Imagement
 Imagement

 Meter / Zero Export
 Imagement

 Imagement
 Imagement

 Imagement
 Imagement

 Imagement
 Imagement

 Imagement
 Imagement

 Meter / Zero Export
 Imagement

 Imagement
 Imagement
 </tr

La page de connexion WLAN s'affiche.

3) Si 'L ECU-C est connecté au routeur, il affichera le nom du Routeur (« SSID ») et l'adresse IP. Vous pouvez maintenant vous connecter par PC ou par téléphone au routeur. Entrez l'adresse IP de l'ECU-C's (ex. 192.168.4.119) dans le navigateur pour accéder au web local.

		ID Management
WLAN LWA		Meter / Zero Export
		Date, Time, Time Zone
Available Networks		Language
* TP-LINK_CS	ail	Network Connectivity
Cons	ect	WLAN
ECU-WIFI_2272		Firmware Update
TP-LINK_BASE		
ECU_R_21600000369		
@ TP-LINK 0580 1		

Schéma 37

Mode Local Wireless Access

- 1) Connectez l'ECU-C au routeur et entrez l'adresse IP suivante: IP 172.30.1.1 (IP fixe) dans le navigateur pour accéder au web local.
- 2) Dans les réglages par défaut, il n'y a pas de mot de passe pour accéder au Point Access WIFI de la passerelle (« Safe Type sur NONE »), si vous souhaitez configurer un mot de passe, cliquez sur le menu déroulant SAFETYPE, sélectionnez le mode de sécuritré et définissez le mot de pase.

ILAN		ID Management
WLAN LWA		Meter / Zero Export
		Date, Time, Time Zone
Set Up Local Wireless Acce	SS	Language
SSID	ECU-WIFI_0425	Network Connectivity
Channel	Auto	WLAN
Safe Type	NONE	Firmware Update
IP	172.30.1.1	

6.Gestion de l ECU-C à distance

L'ECU-C a été conçu avec une fonctionnalité de connexion à distance. Vous pouvez accéder à l'ECU-C à travers le portail de monitoring EMA d'APsystems en utilisant vos identifiants et mot de passe de compte installateur. Les modifications faites à distance via l'EMA ne prendront effet que lors du prochain cycle de rapport de l'ECU-C. L'ECU-C doit avant tout être installé avec une connexion Internet.

La fonctionnalité à distance de l'ECU-C vous permet d'effectuer les opérations suivantes:

- Définir les fuseaux horaires
- Gérer les numéros des micro-onduleurs (ID)

Il y a d'autres fonctions disponibles avec l'ECU-C mais elles ne sont pas décrites dans ce document. Si vous devez accéder à l'une des fonctions ci-dessous, veuillez contacter l' équipe de support technique APsystems :

- Changer les paramètres système
- Allumer ou Eteindre les micro-onduleurs
- Réinitialiser le GFDI
- Réinitialiser les réglages d'alimentation

NOTICE

Cette partie de la documentation suppose que vous ayez déjà utilisé le portail de monitoring EMA d'APsystems.

1) Connectez-vous sur votre compte EMA.

Votre liste de clients dans votre tableau de bord d'installation s'affiche.

2) Sélectionnez l'ECU-C du client que vous souhaitez gérer et cliquez sur le nom d'utilisateur

dans la colonne « compte client »

JSTO	MER LIST												
Custo	amer Account	٠		ECU ID		Inverter I	D		Q Ouery	Export			
D	Customer Account	¢	ECU ID 🔶	True Name 🔶	Country	٥	State 🔶	City	\$	System Size(KW)	Register Date 💠	System Status	Action
	crition		283000014617	Mike	United Sta	tes	WA	La Center			2015-11-18		Delete
	Steven Langer		203000024740	Steven Langer	United Sta	tes	WA	Camas		8	2015-11-10		Delete
	NickDroute		203000006557	Nicolas Drouin	United Sta	tes	WA	Bellevue		10.0	2015-05-05	۲	Delete
	pwinter		203000015787	Paul Unser	United Sta	tes	NY	Smithtow	n .	5	2015-01-31	•	Delete
	didenzez		203000016109	Don Kleszcz	United Sta	tes	CA	Camacillo			2014-12-24		Delete
	ethomason.		203000012880	Earl Thomason	United Sta	tes	WA	Vancouve	e	7.5	2014-11-14	•	Delete
	jiopez		203000014540	Jaime Lopez	United Sta	tes	CA	South Gat	*		2014-10-07	۲	Delete
	Scheff		203000014624	Phil Scheff	United Sta	tes.	CA	Newbury	Park	8.25	2014-10-03		Delete
	Rible		203000012755	Rachael Ribic	United Sta	tes	WA	Spokane		3.3	2014-06-20	۲	Delete
0	PVUSA		20300008668	Steve Coonen	United Sta	tes	Caifornia	Davis			2014-02-07		Delete

6.Gestion de l ECU-C à distance (via l'EMA)

6.1Configuration de l' ECU-C/ Page d'état de l'ECU-C

Voici la page d'accès à distance aux paramètres de l'ECU-C.

	USERLINT REGISTRATION SETTING	English Settings Sign out Bluefrog Olympia,Washington,United States
Current User: NickDrouin	FCII Status	다 사람이는 것이 없다. 이번 것이 많이 많이 했다.
# DASHBOARD	If the ECU Connection Status is changed,Please change it.	
III MODULE		
REPORT ~	ECU STATUS	
HISTORY ~	ECU ID 203000006557 *	
ECU STATUS ECU SETTING AC PROTECTION PAULANCTERS INVERTER STATUS INVERTER GEDI SETTING LIST	EEU Connection Status: normal v Submit	
DIAGNOSE		
Q ⁰ _p User Registration ~		
🗂 васк		

Schéma 40

La page d'accès aux paramètres de l'ECU-C vous permet de :

Définir les fuseaux horaires

 Le fuseau horaire de l'ECU-C peut être réglé ou ajusté à distance via la page EMA de réglage. Si le fuseau horaire n'est pas correctement réglé, les données de production ne s'afficheront pas correctement sur le site EMA.

Entrer les numéros de série des onduleurs

Une fois l'ECU-C installé, vous pouvez accéder à l'ECU-C à distance

pour ajouter les numéros de série (ID) de l'onduleur. Jusqu'à ce que les ID de l'onduleur soient chargés, l'ECU-C ne sera pas en mesure de collecter des données auprès des onduleurs. **Mettre à jour la liste des numéros de série**

 Si un ou plusieurs onduleurs sont ajoutés ou remplacés pour une ou plusieurs nouvelle(s) unité(s), la liste des onduleurs devra être mise à jour dans l'ECU-C.

6.Gestion de l ECU-C à distance (via l'EMA)

6.2 Réglage du fuseau horaire de l'ECU-C

- 1) Cliquez sur le menu pour accéder à la page des paramètres
- 2) Sélectionnez l'onglet "ECU-C SETTING".

La page de configuration de l'ECU-C s'affiche.

				r	/ienu deroulant Fu	seaux Horaires
2	APsystem	S	UISER LIST REGISTRATI		/	English Settings Sign out Bloefrog Olympia,Washington,United States
Ситте	nt User: NickDrouin		FCU Setting			
*	DASHBOARD		Set the ECU time zone or reset la	nks between the ECU and inverters as necessary.	/	
ш	MODULE				/	
	REPORT	~	TIME ZONE CONFIGUARI	ON		
	HISTORY	~	Please select CCU ID	203000006557		
F	REMOTE CONTROL	¥ .	Prease select (C.O.ID	-		
	ECU STATUS		ECU time zone	America/Los_Angeles	Send	
	ECU SETTING					
	AC PROTECTION PABAI	METERS				
	INVERTER STATUS					

Schéma 41

3) À l'aide du menu déroulant "Fuseau horaire", sélectionnez le fuseau horaire approprié.

4) Appuyez sur "Envoyer".

6.3 Gestion et mise à jour des numéros de série des onduleurs

1) Sélectionnez l'onglet "ECU-C SETTING" .

La page de configuration de la liste des onduleurs s'affiche

APsystems				0 ⁰						taglish Sensign (Sign Propia, Washington, United Si
Current New: NickDrowin	ECII S	otti	0.0							
A DASHEGARD	Sermellin	Set the ECD time zone or most links between the ECD and monthes as necessary.								
II MODULE										1
B REPORT	TIME ZONE	E CON	FIGUARION	_						/
HEETORY	•			-						
A MANOTE CONTROL	- Phase se	description		2110000001557						
ECU STATUS	ECU time	29994		America/Lot, Ar	pries		in the second second		/	
AC PHILTECTION PARAMET INVESTIGN STATUS INVESTIGN GEOR SETTING LEST	INVERTER	LINKS	CONFIGUR	ATION						
DIAGNOSE										
C USEN NEGRSTINATION	Choise of	que atilité		AM ·			*			
2 BACK	Charge #	he level	85	Select from bolk	w list		level 1			
•	Invertee	e List								
		ID .	Inverter ID		1.08	Matus		10	Investier ID	Link Matura
		ý.	403000008	718	5.04			2	403000009767	Line.
		3	403000009	281	Link.			4	403000002794	Line
		5	403003039	608	1.098				4030800094669	Link.
		τ	403003030	017	Line.			1	403000000961	Link.

6.Gestion de l'ECU-C à distance (via l'EMA) Sélection de l'opération (Ajouter ou effacer) Viewer de los statis Viewer d

Schéma 43

Ajout de la liste complète des ID de l'onduleur pour un système nouvellement installé.

Il existe deux approches différentes pour ajouter les ID de l'onduleur:

Option 1: page Web

- 1. Sélectionnez Ajouter un onduleur en fonction de la liste d'enregistrement
- 1) Sélectionnez les onduleurs "sélectionnez dans la liste ci-dessous".
- 2) Sélectionnez l'onduleur à ajouter
- 3) Appuyez sur "Envoyer".
- 2. L'ID de l'onduleur spécifié
- 1) Sélectionnez "Ajouter" dans la sélection de fonctionnement.
- 2) Sélectionnez les onduleurs "entrez les numéros".
- 3) Entrez tous les ID de l'onduleur dans le champ ID de l'onduleur (un par ligne).
- 4) Appuyez sur "Envoyer".

Option 2: Téléphone portable-

- 1) Connectez-vous à l'ArrayAPP.
- 2) Sélectionnez le compte d'utilisateur.
- 3) Sélectionnez Link ECU.
- 4) Appuyez sur "Envoyer".
- Supprimer les ID de la liste des onduleurs
- 1. Sélectionnez « Supprimer l'onduleur en fonction de la liste d'enregistrement »
- 1) Sélectionnez les onduleurs "sélectionnez dans la liste ci-dessous".
- 2) Sélectionnez l'onduleur à supprimer.
- 3) Appuyez sur "Envoyer".
- 2. L'ID de l'onduleur spécifié
- 1) Sélectionnez "Supprimer" dans la sélection de l'opération
- 2) Sélectionnez les onduleurs "entrez les numéros".
- 3) Entrez tous les ID de l'onduleur dans le champ ID de l'onduleur (un par ligne).
- 4) Appuyez sur "Envoyer".
- 3. Supprimer tout
- 1) Sélectionnez "Effacer" dans Sélection opération.
- 2) Appuyez sur "Envoyer".

7. Données Techniques

Modèle	ECU-C
Interfaces de Communication	
Micro-onduleur à la passerelle	ZigBee Courant Porteur en Ligne en option
Wi-Fi intégré	802.11g/n
Ethernet	10/100M
Interface USB	Standard
RS232	Standard
RS485	Standard
RJ45	Standard
Caractéristiques Electriques	
Alimentation AC	110~277VAC, 50~60Hz monophasé ou triphasé
Alimentation DC	12~16V
Consommation	3W
Caractéristiques Mécaniques	
Dimensions (L×H×P)	210 x 120 x 41mm (8.3" x 4.7" x 1.6")
Poids	500g (1.1lbs)
Températures de fonctionnement	-40°C to +65°C (-40°F to 149°F)
Système de refroidissement	Convection naturelle, pas de ventilateur
Indice de protection	- IP20 (NEMA 1)
Autres fonctionalités	
Type de réseau	Monophasé/ Triphasé
Contrôle Zéro injection réseau	Puissance sortie onduleur gérée par la communicaition et CTs
Capteurs de courant (CTs)	Mesure de la production et de la consommation
Précision des mesures	Mesure de la production (+/- 0.5% via CT) et de la consommation (+/-
	2.5% via CT)
Conformité	
Conformite	EN61000-6-4,2014/53/EU,EN301489-1/-17,EN62311, EN 300328
	IEC/EN61010-1,EN61000-6-2,

Les caractéristiques peuvent être modifiées sans préavis.

Assurez-vous d'être en possession de la version la plus récente, mise enligne sur notre site web, sur emea.apsystems.com

2018/4/8 Rev1.6

DEEE

Mise au rebut de votre ancien appareil

1. Lorsque ce symbole de poubelle à roue barrée est attaché à un produit, il

signifie que le produit est couvert par la directive européenne 2002/96 / CE.

2. Tous les produits électriques et électroniques doivent être éliminés séparément

du flux de déchets municipaux via des installations de collecte désignées,

nommés par le gouvernement ou les autorités locales.

3. L'élimination correcte de votre ancien appareil aidera à prévenir les risques et conséquences négatives pour l'environnement et la santé humaine.

4. Pour plus d'informations sur l'élimination de votre ancien appareil,

veuillez contacter votre mairie, le service d'élimination des déchets ou le magasin où vous avez acheté le produit.

ALTENERGY POWER SYSTEM Inc.

emea.APsystems.com

APsystems Jiaxing China

No. 1, Yatai Road, Nanhu District, Jiaxing, Zhejiang Tel: +86 573 8398 6967 Mail: <u>info@altenergy-power.com</u>

APsystems Shanghai China

Rm.B403 No.188, Zhangyang Road, Pudong, Shanghai 200120,P.R.C Tel: 021-3392-8205 Mail: info.global@APsystems.com

APsystems Guadalajara:

AV. Lazaro Cardenas 2850-5^o Piso, Colonia Jardines del Bosque C.P. 44520, Guadalajara, Jalisco Tel:52 (33) -3188-4604 Mail: info.latam@APsystems.com

APsystems America

600 Ericksen Ave NE, Suite 200 Seattle, WA 98110 Tel: 844-666-7035 Mail: info.usa@APsystems.com

APsystems Australia

Suite 502, 8 Help Street, Chatswood NSW 2067 Australia Tel: 61 (0)2-8034-6587 Mail: info.apac@APsystems.com

APsystems Europe

Cypresbaan 7, 2908 LT,Capelle aan den Ijssel The Netherlands Tel: +31-10-2582670 Mail: info.emea@APsystems.com

APsystems EMEA

Rue des Monts dor ZAC de Folliouses Sud-Les Echets 01700 Miribel, France Tel: +33-481-65-60-40 Mail: info.emea@APsystems.com

Leader de l'industrie solaire en **Technologie Micro-onduleur**

QT2 Le micro-onduleur quad triphasé le plus puissant

- Conçu pour une connexion au réseau triphasé
- 4 canaux d'entrée à basse tension DC, 2 MPPT
- Une micro se connecte à 4 modules PV
- Puissance de sortie AC continue max de 2000 VA
- Idéal pour les modules PV de haute puissance (courant d'entrée maximum 20A)
- Relais de protection de sécurité intégré
- Facteur de puissance ajustable
- Équilibrage de la sortie triphasée

CARACTÉRISTIQUES PRODUIT

La 2ème génération de micro-onduleurs quad triphasés natifs d'APsystems atteint une puissance de sortie sans précédent de 2000 VA pour s'adapter aux besoins actuels des modules PV haute puissance. Avec une sortie triphasée équilibrée, 4 entrées DC, des signaux ZigBee cryptés, le QT2 bénéficie d'une toute nouvelle architecture.

La conception innovante rend le produit unique tout en maximisant la production d'énergie. Les composants sont encapsulés avec du silicone pour réduire les contraintes sur l'électronique, faciliter la dissipation thermique, améliorer les propriétés d'étanchéité et assurer une fiabilité maximale du système via des méthodes de test rigoureuses, y compris des tests de durée de vie accélérés. Un accès à l'énergie 24h/24 et 7j/7 via des applications ou un portail web facilite le diagnostic et la maintenance à distance.

Le nouveau QT2 est interactif avec les réseaux électriques grâce à une fonctionnalité de gestion du facteur de puissance (RPC) pour mieux gérer le photovoltaïque et les pics de puissance dans le réseau. De plus, il offre un rendement de 97 % avec 20 % de composants en moins par rapport au produit de dernière génération. Le QT2 change la donne dans les installations triphasées pour les toits photovoltaïques résidentiels et industriels ou tertiaires.

SCHÉMA DE CÂBLAGE

Fiche Technique Micro-onduleur QT2 trip	ohasé
Modèle	QT2
Zone géographique	EMEA
Données d'entrée (DC)	
Plage de Tension MPPT	32V-45V
Plage de tension de fonctionnement	26V-60V
Tension d'entrée DC maximum	60V
Tension de démarrage	22V
Courant d'entrée DC maximum	20A x 4
Données de sortie (AC)	
Puissance de sortie maximale	2000VA
Tension de sortie nominale ⁽¹⁾	400V/319V-438V
Plage de tension de sortie	277V-478V
Courant de sortie nominale	2.9Ax3
Plage maximale de variation de fréquence ⁽¹⁾	50Hz/48-51Hz
Plage de fréquence de sortie	45Hz-55Hz
Facteur de Puissance (Adjustable)	0.99/0.8 avance0.8 retard
Nombre Maximum d'unités par branche de 30A ⁽²⁾	9
Rendement	
Rendement maximum	97%
Rendement MPPT Nominal	99.5%
Consommation électrique de nuit	40mW
Données mécaniques	
Plage de température ambiante de fonctionnement ⁽³⁾	- 40 °C to + 65 °C
Plage de température de fonctionnement interne	- 40 °C to + 85 °C
Dimensions	359mm X 242mm X 46mm
Poids	6kg
Section du câble de sortie AC	4mm ²
Type de connecteurs	Stäubli MC4 PV-ADBP4-S2&ADSP4-S2
Système de refroidissement	Convection - Pas de ventilateur
Indice de protection	IP67
Caractéristiques	
Communication (entre micro-onduleurs et ECU) ⁽⁴⁾	Communications Zigbee cryptées
Type de transformateur	Transformateur haute fréquence, isolé galvaniquement
Monitoring	Energy Management Analysis (EMA) system
Garantie ⁽⁵⁾	10 ans standard ; 20 ans en option
Conformité	
Conformité réseaux électriques, Sécurité et EMS	EN 62109-1; EN 62109-2; EN 61000-6-1; EN 61000-6-3;

(1) La plage de fréquence de tension peut être étendue au-delà si demandé par le fournisseur d'énergie. (2) Le nombre maximum d'unités par branche peut varier. Se référer aux exigences locales.
 (3) Le micro- onduleur pourra entrer en mode de production dégradée dans le cas d'une installation ne per-mettant pas une bonne ventilation ou une dissipation de chaleur. (4) Il est recommandé de connecter au maximum 80 micro-onduleurs à une passerelle ECU pour une communication stable.

(5) Pour bénéficier de la garantie, les micro-onduleurs APsystems doivent être supervisés via le portail EMA. Veuillez-vous référer à nos conditions générales de garantie disponibles sur <u>emea.APsystems.com</u>

Bureaux européens

APsystems Karspeldreef 8, 1101 CJ, Amsterdam, The Netherlands Tel: +31 (0)85 3018499 Email : emea@apsystems.com

UNE217002,UNE206007-1,RD647,RD1699,RD413; CEI 0-21; VDE0126-1-1,VFR2019,UTE C15-712-1,ERDF-NOI-RES_13E; EN 50549-1; VDE-AR-N 4105

© Tous droits réservés

© Tous droits réservés Les caractéristiques peuvent être modifiées sans préavis, assurez-vous d'être en possession de la version la plus récente, mise en ligne sur notre site web : <u>emea.APsystems.com</u>

APsystems Rue des Monts d'Or, ZAC de Folliouses Sud-Les Echets, 01700 Miribel, France Email : emea@apsystems.com | Tel: +33-4-81 65 60 40

Leader de l'industrie solaire en **Technologie Micro-onduleur**

Série DS3 Le micro-onduleur duo le plus puissant

- Un micro-onduleur connecte deux modules PV
- Puissance de sortie maximum de 730VA ou 880VA (2 versions disponibles)
- Un MPPT pour chaque module
- Facteur de puissance ajustable (RPC)
- Fiabilité maximum, IP67
- Communications Zigbee cryptées
- Relais VDE intégrés

CARACTÉRISTIQUES PRODUIT

La 3^{ème} génération de micro-onduleurs duo APsystems atteint des puissances de sortie sans précédent de 730 VA ou 880 VA pour s'adapter au modules photovoltaïques de forte puissance disponibles aujourd'hui et demain. Dotés de 2 MPPT indépendants, d'une communication Zigbee cryptée, les DS3L et DS3 bénéficient d'une toute nouvelle architecture et sont entièrement compatibles avec les micro-onduleurs QS1 et YC600.

Leur conception innovante et compacte offre un produit plus léger tout en maximisant la production d'énergie. Les composants sont encapsulés avec du silicone pour réduire les contraintes sur l'électronique, faciliter la dissipation thermique, améliorer les propriétés d'étanchéité et assurer une fiabilité maximale du système via des méthodes de test rigoureuses, y compris des tests de durée de vie accélérés. Un accès à l'énergie 24h/24 et 7j/7 via des applications ou un portail Web facilite le diagnostic et la maintenance à distance.

La nouvelle série DS3 est interactive avec les réseaux électriques grâce à une fonctionnalité appelée RPC (Reactive Power Control) pour mieux gérer les pics de puissance photovoltaïque dans le réseau. Avec une performance et une efficacité de 97%, une intégration unique avec 20% de composants en moins, les micro-onduleurs DS3L & DS3 d'APsystems changent la donne pour le solaire résidentiel et tertiaire.

SCHÉMA DE CABLAGE

Modèle	DS3-L	DS3	
Données d'entrée (DC)			
Puissance module recommandée (STC) par entrée DC	de 250Wp à 525Wp+	de 300Wp à 660Wp+	
Plage de Tension MPPT	25V-55V	32V-55V	
Plage de tension de fonctionnement	16V-60V	26V-60V	
Tension d'entrée DC maximum	60	V	
Courant d'entrée DC maximum	18A x 2	20A x 2	
Données de sortie (AC)			
Puissance de sortie maximale	730VA	880VA	
Tension de sortie nominale*	230V/18	4V-253V	
Courant de sortie nominale	3.2A	3.8A	
Plage maximale de variation de fréquence*	50Hz/48	Hz-51Hz	
Facteur de Puissance (Adjustable)	0.99/0.8 avan	ce0.8 retard	
Nombre Maximum d'unités par branche de 20A**	6	5	

Rendement

Rendement maximum	97%
Rendement CEC	96.5%
Rendement MPPT Nominal	99.5%
Consommation électrique de nuit	20mW

Données mécaniques

Plage de température ambiante de fonctionnement	- 40 °C à + 65 °C
Plage de température de fonctionnement interne	- 40 °C à + 85 °C
Dimensions (W x H x D)	262mm x 218mm x 41.2mm
Poids	2.6kg
Section du câble de sortie AC	2.5mm ²
Type de connecteurs	MC4
Système de refroidissement	Convection - Pas de ventilateur
Indice de protection	IP67

Caractéristiques

Communication (entre micro-onduleurs et ECU)	Communications Zigbee cryptées
Type de transformateur	Transformateur haute fréquence, isolé galvaniquement
Monitoring	Accès aux options de monitoring via la plateforme EMA (Energy Management Analysis)
Garantie***	10 ans standard ; 20 ans en option

Conformité

Conformité réseaux électriques, Sécurité et EMS

*La plage de fréquence de tension peut être étendue au-delà si demandé par le fournisseur d'énergie. **Le nombre maximum d'unités par branche peut varier. Se référer aux exigences locales *** Pour bénéficier de la garantie, les micro-onduleurs APsystems doivent être supervisés via le portail EMA. Veuillez-vous référer à nos conditions générales de garantie disponibles sur emea.APsystems.com

Bureaux européens

APsystems Cypresbaan 7, 2908LT, Capelle aan den ljssel, The Netherlands Tel: 031-10-2582670 Email : emea@apsystems.com

EN 62109-1; EN 62109-2; EN 61000-6-1; EN 61000-6-3; UNE217002,UNE206007-1,RD647,RD1699,RD413; CEI 0-21; VDE0126-1-1,VFR2019,UTE C15-712-1,ERDF-NOI-RES_13E; EN 50549-1; VDE-AR-N 4105

© Tous droits réservés Les caractéristiques peuvent être modifiées sans préavis, assurez-vous d'être en possession de la version la plus récente, mise en ligne sur notre site web : <u>emea.APsystems.com</u>

APsystems Rue des Monts d'Or, ZAC de Folliouses Sud-Les Echets, 01700 Miribel, France Email : emea@apsystems.com | Tel: +33-4-81 65 60 40

Module photovoltaïque Demi cellule Série L Plus (6x20)

Type de modul	е	SR-M660360HLP		SR- M66	SR-M660365HLP		50370HLP	SR - M660375HL			
Test		STC	NOCT	STC NOCT		STC	NOCT	STC	NOCT		
Tolérance	(%)	0~	-+3	0~	0~+3		-+3	0~+3			
Efficacité module	(%)	19	.46	19	.73	2	20	20.27			
Puissance max	Pmax(W)	360	266.59	365	270.29	370	273.99	375	277.69		
Tension circuit ouvert	Voc(V)	40.92	38.18	41.12	38.38	41.32	38.48	41.56	38.7		
Courant court circuit	Isc(A)	11.22	9.01	11.3	9.07	11.39	9.15	11.46	9.21		
Tension à puissance max	Vm(V)	33.69	31.08	33.89	31.28	34.09	31.48	34.29	31.66		
Courant à puissance max	Im(A)	10.69	8.55	10.78	8.62	10.86	8.69	10.94	8.75		
Type de cellule	(mm)		166x83(9BB Mono-Crystalline Silicon)								
Nombre de cellules	(Pcs)		120(6×20)								
Tension max du système	; (V)		DC1000								
Coefficient témperature Voc	(%/℃)		-0.285								
Coefficient témperature Isc	(%/℃)		0.055								
Coefficient témperature Pm	(%/℃)		-0.365								
Température de	°C				-40 to 85						
Température nominale cellule	°C		45±2								
Fusible en série	(A)		15								
Résistance à la pression	(Pa)				5400						
Résistance au vent	(Pa)				2400						

STC: Irradiance 1000 Wc/m², température cellule 25°C, AM1.5

NOCT: Ittadiance 800Wc/m², température ambiente 20°C, vitesse du vent 1m/s

DESSINS TECHNIQUES

MATÉRIELS Cadre Aluminium anodisé Verre Verre trempé 3.2 mm à faible teneur en fer Cellule . 6x20pcs 166x83mm cellule solaire mono Boîte de jonction Cournt nominal ≥ 15A IP≥67, TUV &UL Câble et connecteur 4mm²,MC4 ou MC4 compatible Longueur de câble 1000 mm ou personnalisé pour le client

COURBE IV

P-V CURVES OF PV MODULE(370W)

DÉTAILS D'EMBALLAGE

Dimensions	mm	1776x1052x35					
Poids	kg	20					
Capacité de chargement	832pcs/40'HC						
Emballage	pcs/palette	30					

©Sunrise Energy Co., Ltd All rights reserved. Specifications included in this datasheet are subject to change without notice.

DMEGC

DM410M10-54HSW/-V

400 | 405 | 410 Wp

demi-cellules monocristallines, fond blanc, cadres en aluminium

Hengdian Group DMEGC Magnetics Co., Ltd.

Caractéristiques électriques

Module	Pm (W)	Tolérance	Imp (A)	Vmp (V)	lsc (A)	Voc (V)	Efficience
DM400M10-54HSW/-V	400	0 - 3 %	13.19	30.35	13.59	37.21	20.65%
DM405M10-54HSW/-V	405	0 - 3 %	13.28	30.52	13.68	37.33	20.91%
DM410M10-54HSW/-V	410	0 - 3 %	13.37	30.69	13.77	37.45	21.17%

STC irradiance of 1000W/m² spectrum AM 1.5 and cell temperature of 25°

Données mécaniques

type de cellule	P type mono crystalline
disposition des cellules	6 x 18
structure du module	verre / fond
epaisseur du verre	2.8 mm
classification des modules PV	class II
type protection boite de jonction	IP67 / IP68
cables	4 mm ² 1100 mm*
type de connecteurs	MC4 / MC4 compatible
class de résistance au feu	class C

* longueur personnalisée en option

Spécification diverses

temperature de fonctionnement	-40 °C à +85 °C
capacité maximale de charge de neige	5400 Pa
capacité de charge maximale du vent	2400 Pa
tension système max	1000V /1500V DC (IEC)
courant inverse max	25 A
diodes by pass	3

Caractéristiques thermiques

coefficient de temperature Isc	+ 0.0448 % / °C
coefficient de temperature Voc	- 0.246 % / °C
coefficient de temperature Pmax	- 0.330 % / °C

Conditionnement

dimensions module (mm)	1708 x 1134 x 30
poids	20 kg
containeur	40' HQ
modules par palette	36
modules par containeur	936

Les dimensions et poids finaux des panneaux et de l'emballage seront déterminés lors de la commande.

Courant-Tension & Puissance- Courbe de tension

L'influence de la température sur Isc, Voc, Pmax

ME GC S

R

LR4-60HPH **350-380M**

Haute efficacité Module Photovoltaïque Mono avec technologie Demi cellule

CERTIFICATS

IEC 61215, IEC 61730, UL 61730

ISO 9001:2008: ISO Quality Management System

ISO 14001: 2004: ISO Environment Management System

TS62941: Guideline for module design qualification and type approval OHSAS 18001: 2007 Occupational Health and Safety

Tolérance positive (0 ~ +5W) garantie

Haute efficacité de conversion de module (jusqu'à 20.9%)

Haute efficacité de conversion de module (jusqu'à 20.9%)

Dégradation de puissance plus lente grâce à la technologie Low LID: première année < 2 %, 0,55 % année 2-25

Résistance PID

Réduction de perts avec un courant de fonctionnement inférieur

Rendement énergétique plus élevé à température de fonctionnement plus basse

Risque de point chaud réduit

longi

Dessin Technique (mm)

_R4-60HPH **350~380M** Paramètres mécaniques Paramètres de fonctionnement

1038

Cellules: 120(6x20)

Boîte de jonction: IP68, 3 diodes Câble de sortie: 4mm^{2,} 1200mmde longueur

Verre: Verre trempé 3.2mm

Cadre: Aluminium anodisé

Poids: 19.5kg

Dimensions: 1755x1038x35mm

Emballage: 30 pcs/palette 180pcs/20'GP 780pcs/40'HC

Température de foctionnement: -40 C ~ +85C Tolérance de puissance de sortie: 0 ~ ±5% Tolérance Voc et lsc: ±3% Tension max du système: DC1500V (IEC/UL) Fusibles en série: 20A Température nominale cellule: 45±2C

Classe de sécurité: Classe II

Classement au feu: UL Type 1 ou 2

Caractéristiques électriques

Type de module	LR4-60H	PH-350M	LR4-60HI	PH-355M	LR4-60H	PH-360M	LR4-60HI	PH-365M	LR4-60HF	PH-370M	LR4-60HF	PH-375M	LR4-60HF	PH-380M
Test	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Puissance Max (Pmax/W)	350	261.4	355	265.1	360	268.8	365	272.6	370	276.3	375	280.0	380	283.8
Tension circuit ouvert (Voc/V)	40.1	37.6	40.3	37.8	40.5	38.0	40.7	38.2	40.9	38.3	41.1	38.5	41.3	38.7
Courant court circuit (Isc/A)	11.15	9.02	11.25	9.10	11.35	9.17	11.43	9.25	11.52	9.32	11.60	9.38	11.69	9.45
Tension à la puissance maximale (Vmp/V)	33.6	31.3	33.8	31.5	34.0	31.7	34.2	31.8	34.4	32.0	34.6	32.2	34.8	32.4
Courant à puissance maximale (Imp/A)	10.42	8.35	10.51	8.43	10.59	8.49	10.68	8.56	10.76	8.63	10.84	8.69	10.92	8.76
Efficacité du module (%)	19.	.2	19	.5	19	9.8	20).0	20	0.3	20).6	20	.9
STC (Standard Testing Conditions): Irradiance 1000W/m²,Température cellules 25C, Spectra à AM1.5														

NOCT(Nominal Operating Cell Temperature): Irradiance 800W/m²,Température ambiante 20C, Spectra à AM1.5, Vent 1m/S

Température (STC) Chargement mécanique Coefficient température ISC: +0.048%/C Charge statique maximale sur la face avant: 5400Pa Coefficient température Voc: -0.270%/C Charge statique maximale à l'arrière: 2400Pa Coefficient température Pmax: -0.350%/C Test Hallstone: Grêle de 25 mm à la vitesse de 23 m/s

Curve I-V

Current-Voltage Curve (LR4-60HPH-365M)

Power-Voltage Curve (LR4-60HPH-365M)

Current-Voltage Curve (LR4-60HPH-365M)

